Strategically knowing: a new framework of modal logics

Andrés R. Saravia

CONICET and Universidad Nacional de Córdoba, Argentina

FACAS 2022

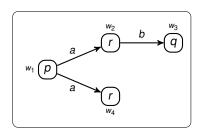
4/111/2022

Who am I?

- PhD student in Computer Science (since March 2020)
- Director: Raul Fervari
- Member of the Logics, Interaction and Intelligent Systems (LIIS) group, at FaMAF-UNC.
- Working on Modal Logics featuring knowledge and abilities: epistemic notions, deontic notions, etc.

Where it all started: "an epistemic approach"

- Epistemic Logic: reasoning about knowledge of agents.
 - $\circ\,$ 'Knowing that' assertions.


Background

- E.g. John knows that it is sunny in Paris.
- Knowing how: abilities of the agent to achieve a certain goal.
- Wang [2015,2018] proposed a framework for knowing how logics.

Knowing how on LTSs

 $\mathcal{M} \models \mathsf{Kh}(\psi, \varphi)$ iff exists a plan σ such that

- (1) is fail-proof at all ψ -states and
- (2) from ψ -states, σ always ends in φ -states.

⊨ Kh(p, r)
plan a takes the agent from every
p-state and reach only r-states.

$$\not\models \mathsf{Kh}(p,q)$$

- ϵ and $\frac{a}{a}$ are not suitable actions as they do not reach a $\frac{a}{a}$ -state (w_3) ; $\frac{ab}{a}$ aborts at w_4 .
- Strategically knowing

Is this logic epistemic?

Knowing that:

Background

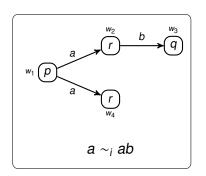
- ontic information: facts and propositionals truths in a state;
- epistemic information: uncertainty or indistinguishability relation, agent's perception.

Knowing how:

- o the agent has at her disposal all plans to choose a witness.
- there is no distinction between ontic and epistemic information.

Modeling uncertainty

- The agent has at her disposal all plans to choose a witness.
 What if she has not the knowledge that certain plans exist?
 Example: the empty plan ("skip").
- For the agent, every plan is different from each other.
 What if she is not able to distinguish certain plans from others?


Example: between basic actions or the the order of these.

Many different reasons for not knowing how.

C. Areces, R. Fervari, A. R. Saravia, F. R. Velázquez-Quesada. *Uncertainty-Based Semantics for Multi-Agent Knowing How Logics.* (TARK 2021).

Uncertainty-based semantics

- $\mathcal{M} \models \mathsf{Kh}_i(\psi, \varphi)$ iff exists a set of plans π such that
 - (1) every plan in π is indistinguishable from each other,
 - (2) every plan in π is fail-proof at all ψ -states and
 - (3) from ψ -states, every plan in π always ends in φ -states.

 $\mathcal{M} \not\models \mathsf{Kh}_i(p,r)$

plan a takes the agent from every p-state and reach only r-states; however, plan ab aborts at w_4 and the set $\{a, ab\}$ is not fail-proof at w_1

More about our contributions

- Uncertainty-Based Multi-Agent Knowing How Logics:
 - Indistinguishability relation between plans, for multiple agents.
 - Describe other reasons for not "knowing how".

Moreover:

- o Model checking is in P.
- o SAT is NP-complete.
- Strongly complete axiom system.
- Weaker than the original proposal (but a more general logic).

Ongoing and future works

Ongoing:

- Reinterpretation in Deontic Logic: Knowingly complying with C. Areces, V. Cassano, P. Castro, R. Fervari,
- Dynamic operators: Learning/forgetting how. with C. Areces, R. Fervari, F. Velázguez-Quesada.

Future work:

- Resource Bounded Strategies.
- Combine knowing how + knowing that.
- Collective knowledge, groups of agents.